
SHORT PAPERS 413

minated by [ YS ] yields

[~l[~mlll = ([FS1 + [r][a][7J-’[a]-’zs]zs]. (94

Here the apparent characteristic impedance is readily identified and

agrees with Amemiya’s result [3], [4]. The occurrence of the inverse

modal matrix, however, would suggest difficulties with a system that

is partially degenerate. This, of course, is the reason for the distinct-

ness assumption. It is also the reason for the particular form of the

modal matrix formation of (5). To clarify this, the fully degenerate

case may be considered. If, for this case, [ Vi, ] is interpreted as the

voltage of line i to ground, i.e., if the word “modal” is ignored, and if

[~1 = [1 ], then (9a) becomes

v,,(o)] = ([l’s] + [vl[?l-’)-’~sl (9b)

which is exactly the fully degenerate solution. This would suggest

that the modal matrix for the partially degenerate system may be

constructed by partitioning. Thus if the first m eigenvalues are dis-

tinct and s =n —m eigenvalues are equal, then [a] becomes

(lo)

Here the quantities in the parentheses denote the number of rows and

columns of the submatrices. This form of [a] may be shown to be

correct by rigorous calculations. It is convenient because it is non-

singrdar and because degeneracy may be introduced very simply by

setting selected elements of a to zero. The earlier assumption of non-

degeneracy is thus removed.

The reflection coefficients at the receiving end are due to the ter-

mination [YE ] at x = L. A straightforward evaluation yields

[Vrm]l] = [ec@J([Y][a][’y]-’ + [YR][cz])-’([Y] [a][7]-’

- [vr?][a])[,-~~] [v,,] l]. (11)

The reflection coefficient at the receiving end is, therefore,

[~R] = [cYI-’[[Yo1 + [~R]]-l[[~O] - [~R]][cx] (12)

where

[l’,] = [Y][cr][’y]-+ip.

The reflection coefficient at the sending end, x = O, may be obtained

by subscript exchange, The unknown amplitudes become

Vkk——.
vi 1

= [a][[,-w] + [CT(L-Z)JIPR][,-TL] ][[l]

– [psl[~-~Lj[pRl[~~Ll l-l[al-l([~sl + [YOI)-IZSI. (13)

Here the first m entries into the column vector denote the modal

voltages in mode k on conductor k to ground. The remaining entries

are the amplitudes from conductor i =m+l, m +2, . . . , n to ground

which share the single propagation constant -Y~+l.

The physical interpretation of the analysis is of interest and

worthy of comment.

Each mode has its own characteristic impedance [Y] [w-l. This

mode characteristic impedance may be interpreted in terms of n

simple transmission lines from the conductors to ground and

(n/2) (n – 1) simple transmission lines that exist between conductors.

Thus this modal network consists of separate transmission lines that

are coupled by conductor sharing. Since there are m of these net-

works, a total of (wzn/2) (n + 1) simple lines are involved in the non-

degenerate part of the system, However, since one is talking about a

normal mode, only one line voltage can be determined by the bound-

ary conditions in each mode. The degenerate part of the transmission

system consists of (s/2) (s + 1) simple lines. This system decouples

itself from the main system by not exciting or grounding those mem-

bers that do not share the degeneracy. However, since its eigenvalue

is degenerate, s line voltages are determined by the boundary condi-

tions. Thus for a single degeneracy the system reduces to m +1 sub-

systems and a total of (n/2) (n +1) + [(n —rw)/2 ] (n —wt+l) distinct

transmission lines in which exactly n voltages are determined by the

boundary conditions. The total system can be terminated by a passive

network. This does not depend on the fact that the :system is lossless.

This reflectionless termination has the ability to transfer energy from

one mode to the other to obtain a proper match. In the general case,

the modal excitation is a time-dependent quantity governed by the

forcing function, the boundary conditions, and tbe modal charac-

teristic impedances and not by coupling between the modes. This

statement is supported readily by expanding (13) in terms of multiple

reflections that are useful for transient calculations and by noting

that (9) is exactly a lumped-circuit calculation. The implication is

and should be that the entire analysis may be based on calculations

that occur at the boundary and in which transmission-line concepts

are used only in the sense that cause and effect are time delayed and

that currents and voltage are related via the characteristic impedance.
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Computation of the Characteristics of Coplanar-

Type Strip Lines by the Relaxation Method

TAKESHI HATSUDA

AfMract-The characteristics of new strip fines (i.e., a single

strip conductor and a two symmetrical strip-conductor coplanar-type

strip line, which consist of single- or two-center strip conductors and

ground plates on a dielectric substrate and outer ground conductor)

are calculated by the relaxation method. The effect of the outer

ground conductor on these lines is analyzed, and the characteristic

impedance and velocity ratio are determined. The characteristic fm-

pedance is determined experimentally, and the maximum values of

the discrepancies compared with the calculated values of each of the

lines are 2.0-3.0 percent.

INTRODUCTION

Microwave circuits used in a communication satellite, for example,

require light weight, small size, and high reliability, so the strip line

is suited to these needs. The characteristic impedance and phase-

velocity ratio of conventional triplate strip lines are determined by

the thickness of the dielectric substrate and its relative dielectric

constant, by the width of the strip conductors, and by the height of

the line. In order to obtain a smaller line when usirw the same dielec-..
tric substrate and same height of line, or to obtain a more versatile

line, different types of new lines must be considered.

The coplanar waveguide (CPW) is very attractive, and it is an-

alyzed in open boundary by using conformal mapping [1]. But closed

boundary lines are needed for high-gain amplifier circuits, and lines

having side walls can help to miniaturize microwave circuits.

In this short paper, two new types of strip lines [i.e., the single

strip-conductor coplanar-type strip line (S-C PS,), which has a

center strip conductor and ground plates on dielectric substrate as

shown in Fig. 1 (a), and the two symmetrical strip-conductor co-

planar-type strip line (T- CPS), which is shown in Fig. (b)] are an-

alyzed.
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Fig.1. (a) Single strip.conductor coplanar-type strip line (S-CPS). (b) Two
symmetrical st:ip-conductor coplanar-type strip line (T-CPS).

43

j

%

- 37
N

z
36

>1

,/s =0.43 ~~

Vfwo
35

./, :007

48

34
I

49

100

w/g= O.18 , Q/g= 041{ b:Ol

WIQ=O18 , afJ=O06

80

60

:
.
.

w 40

20

.
‘\

‘\\
L. _ -_--.,--- ----

‘.,

~_!-.. :;
Vlvo

.
,6

‘.

%.< .5

%,.
i

//

z
\

0

S.+smm, d.oe,mm

0 I 1

0 .1 .2 .3 .4

d/s

Fig. 3. Z and v/m of S-CPS and conventional type versus d/s.
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Fig. 2. Z and v/m of S-CPS versus b/[(w/2) +al (s ‘4.3 mm d =0.61 mm
e! =9.4, 61 =1.0).

As shown in Fig. 1 (a), the dielectric substrate (whose relative

dielectric constant is c,) is supported by another dielectric (Teflon,

whose relative dielectric constant is el =2.1), and this is used as a

shock absorber and also for maintaining the same potential (to = O)

at the ground plate and the outer ground conductor by putting copper

foil between the Teflon and the ground plate.

The solution of Laplace’s equation for the inhomogeneous case,

where the boundaries are comprised of various kinds of dielectrics

and multiconductors, is obtained by the use of the relaxation method

[2]- [9]. The half area of Fig. 1 (a) and the quarter area of Fig. 1 (b)

are considered for programming.
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Fig. 4. Z and V/aO of ‘S-CPS versus w/s for b =0 and a/s =0.143, 0.2S6,
n 429 (s=4.3, g =10.7, d =0.61, t =1.5 mm, n=9.4).

CHARACTERISTICS OF THE S-CPS

The effects of the side wall and the outer ground conductor of the

S-CPS are examined first. The characteristics of the S-CPS depend

upon the parameter b/ [(zeJ/2) +a] as shown in Fig. 2. Values of w/s

and a/s used in calculating the characteristics are shown in the figure.

From Fig. 2 we see that the characteristic impedance Z and phase-

velocity ratio V/UO asymptotically approach constant values when the

ratio b/[ (w/2) + a ] is larger than 1.0-1.5. The effect of changes of the

s is shown in Fig. 3. The conventional type (i.e., b = O) with zv/g = 0.18

is also shown in Fig. 3. We see that the variation of Z is smaller but

ZJ/ZIOis larger in the S-CPS than in the conventional type. In the

S-CPS, values of Z and V/VO tend to become constant when d/s be-

comes small (i.e., s becomes large).

In Fig. 4, Z and ujno versus w/s of the S-CPS are shown when ajs

assumes constant values of 0.143, 0.286, and 0.429. The top solid

curve in Fig. 4 shows the characteristics of the conventional type,

which has the supporting dielectric (Teflon, q =2.1), and the dot and

dash curves show the characteristics with no Teflon (i.e., q = 1.0).

The ratios of w/s and v/a, for a SO-Q transmission line of an S-CPS

compared with the conventional type of strip line are shown in Table

I. The effect of Teflon on the S-CPS is also shown in Fig. 4, and we

see that the effect is smaller than for the conventional type.

CHARACTERISTICS OF THE T-CPS

Computing programs are made for two modes, i.e., 1) ~,= $, = 1.0

and ~0=0 for the even mode, and 2) ~1 = 1.0, Y2= —1.0, and ~0=0 for

the odd mode, where *I and +.2 are the potentials of the upper and

lower strip conductors, respectively. Four characteristic impedances

and four phase-velocity ratios are defined, i.e., ZoeI, ZOeII, (v/mJeI,

and (v/uJeI1 (even-mode case) and ZOO1, ZooII, (zI/vo)oI, and (U/ZJO)OlI

(odd-mode case). Notations I and II indicate the integrating path,
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TABLE I

REDUCTION RATIO OF w/s AND Vjvo OF S-CPS 50-Q LINE

Reduction Reduction
Ratio Ratio

w/s (percent) v/vo (percent)

Conventional type 0.9 0.73
a/s= O.286 0.64 0.62
a/s= O.143 0.36 % 0.51 ;;

e denotes even mode, and o denotes odd mode. In the symmetrical

strip-conductor case, ZoeII=ZoeI/2, (v/vO)eI =(v/vO)eIr, and Zoo= ~.

The effect of the side wall and the outer conductor of the T-CPS

shows results similar to the S-CPS case.

The characteristic impedance and phase-velocity ratio versus zv/s

of the T-CPS when a/s= O.143 and 0.286 are shown in Fig. 5. Top

curves of Fig. 5 show the characteristics of the conventional-type

strip line. Reduction ratios of values of zv/s and (v/vO)eI1 for a 50-Q

transmission line compared with the T-CPS and conventional type

are shown in Table II. From Tables I and II it is apparent that the

reduction ratio of zv/s and V/VO for the T-CPS is larger than for the

S-CPS.

EXPERIMENTAL RESULTS

The circular dots plotted in Figs. 4 and 5 are measured points.

Experimental strip lines were made from gold-plated Cr-Au thin

film. The coaxial to the strip-line connection was achieved by an

omni spectra miniature (OSM ) adapter. Characteristic impedances

Z of the S-CPS and Zoen of the T-CPS were measured by a time-

domain reflectometer. The maximum value of the differences from the

TABLE II

REDUCTION RATIO OF WIS AND (v/vi7)e11

OF T-CPS SO-Q LINE

w/s (v/vLJell

Conventional type 0.75 0.79
a/s = 0.286 0.36 0.60
Reduction ratio 52 percent 24 percent

TABLE III

ACCURACY OF RELAXATION METHOD COMPAE.ED wrm [1OJ

Results of [10] Results of Relaxation Method and Error
——

w/s g/s Zo(sl) 7J/vo

2.o 95.7 0.s965
!:; 2,o 95.7 0.s965
0.2 3.0 97.0 0.900s
0.2 3,0 97.0 0.900s
0.333 2.0 S1.2 0.9109
0.333 3.0 81.8 0.9153
0.466 2.0 69.9 0.9209
0.466 3.0 70.9 0.9259

Mesh
(s Xg) ZO.Ii(Q) (P%%)

0.82
1.09
1.25
1.49
1.69
1.24
0.61
0.54

Note: e =2.35, dls =0.2.

calculated values is 2 percent in the conventional type in Fig. 4, and

3 percent in the S-CPS in Fig. 4 and the T-CPS in Fig. 5. This is con-

sidered to be due to the uncertainty in the value of the relative di-

electric constant of the substrate, equipment construction errors, and

measuring errors.

ACCURACY

The accuracy of results can be checked by comparing with the

results of [1 O], and is shown in Table III where the program T-CPS

(even-mode case) is computed by setting b = O (i.e., conventional

type). It is seen that the value of the error of ZoeII is 1.49 percent

when mesh points of heights are 80 points, w/s= 0.2, and g/s= 3.o.

The accuracy in regard to (v/vo)eII is better than ZoelI as shown in

Table III. In the calculation of the CPS, as in Figs. 4 and 5, the mesh

points ofs are 84 points, g/s= 2.48, and the error becomes small.

CONCLUSION

By the use of the relaxation method, the characteristics of the

S-CPS and the T-CPS are obtained. Merits of the CPS are: 1) The

characteristic impedance and phase-velocity ratio become smail com-

pared with the conventional-type line due to the existence of ground

plates; 2) the CPS is a shielded-type transmission line, so it is suitable

to use for high-gain transistor amplifiers or other active circuits; 3) the

effect of side wall and other circuits near the center conductor is

smaller than conventional type; 4) it is easy to connect shunt ele-

ments, for example, in the circuits in transistor amplifiers; 5) it can

be used in nonreciprocal magnetic-device applications similar to the

CPW’ and the slot line; and 6) it is easy to use together with the CPS

and conventional-type line.

The S-CPS and T-CPS are being used in experimental 4-GHz

transistor amplifiers, filters, nonreciprocal magnetic devices, etc. The

relaxation method analysis is a quasi-TEM approximation. Thus it

has a high-frequency limit, so another analytical method must be

considered at high frequencies.
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Solutions for Some Waveguide Discontinuities

by the Method ;f Moments

VU lKHAC THONG

Abstract—The electromagnetic boundary value problem of two

waveguide8 coupled by an nperture or an aperture in a waveguide

radiating into free space may be described by an integral equation.

An analytical solution to this integral equation cannot be readily

found due to the complexity of the kernel. However, extremely use-

ful results may be obtained if the method of moments is employed

to reduce the integral equation to a matrix equation which can be

solved by known methods. In thki short paper, series and shunt slots

in a rectangular waveguide are analyzed using thk technique.

The electromagnetic boundary value problem of two waveguides

coupled by an aperture or an aperture in a waveguide radiating into

free space may be considered to be solved if the tangential components

of the electric field at the aperture are determined for various excita-

tion conditions. For a system of two waveguides coupled by an aper-

ture S, the integral equation for the tangential components of the

electric field at the aperture can be shown to be [1]

22X H,o=,j~fnXJ[G,,,(r170) +Gk2,(f,r 0)]
*

. [n X E(sm)] also. (I)

~h(l), ~L(2) are the magnetic Green’s dyadics for the separate wave-

guides satisfying equations such as

v x v x Gh(’)(, I 70) - k%k(l)(, I ,0) = – 76(. - ,.)

2’2x v x Gh(l)(r[ ?’0) = o

at the guide walls. H’n” is the magnetic field of the exciting mode. It

is assumed that the waveguides are connected to matched loads.

Analytical solution to the integral equation (1) may not be readily

found due to the complexity of the kernel. However, extremely useful

approximate results may be obtained if it is noted that (1) has the
form

Lf = (L(l) + L(’))f = g (2)

where L, L(l), L(2) are linear operators. By the method of moments [2]

(2) can be reduced to an IVth -order matrix equation. If the basis func-

Manu~ript received June 14, 1971; revised November 29, 1971.
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